Vocabulary
Numerator - The number of expression written above the line in a fraction.
Denominator - The quantity below the line in a fraction, telling the number of equal parts the whole is
divided into.
Common Denominator - The same number on the bottom of all fractions involved in the equation.
Simplify - Combine like terms and apply properties to an expression to make computation easier.
Equivalent - Naming the same number.
Before you can add or subtract
fractions with different denominators, you must first find equivalent
fractions with the same denominator, like this:
- Find the smallest multiple (LCM) of both numbers.
- Rewrite the fractions as equivalent fractions with the LCM as the denominator.
A FRACTION IS A number we need for measuring; therefore we sometimes have to add or subtract them. Now, to add or subtract anything, the names of what we are counting -- the units -- must be the same.
2 apples + 3 apples = 5 apples.
We cannot add 2 apples plus 3 oranges -- at least not until we call them "pieces of fruit."
In the name of a fraction -- "2 ninths," for example -- ninths are what we are adding.
2 ninths + 3 ninths = 5 ninths.
That unit appears as the denominator.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
"5 eighths + 2 eighths = 7 eighths."
The denominator of a fraction has but one function, which is to name what we are counting. In this example, we are counting eighths.
Fractions with different denominators
To add or subtract fractions, the denominators must be the same. Before continuing, then, the student should know how to convert one fraction
to an equivalent one, by multiplying the numerator and the denominator. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
We choose a common multiple of the denominators because we change a denominator by multiplying it.
Solution. The lowest common multiple of 3 and 4 is their product, 12.
We will convert each fraction to an equivalent fraction with denominator 12.
times 2 is 8."
(In that way, we multiplied both 2 and 3 by the same number, namely 4.
times 1 is 3." (We multiplied both 1 and 4 by 3.)
The fact that we say what we do shows again that arithmetic is a spoken skill.
In practice, it is necessary to write the common denominator only once:
Solution. The LCM of 5 and 15 is 15. Therefore,
times 4 is 12."
15.
Solution. The LCM of 3, 6, and 12 is 12.
times 2 is 8."
times 1 is 2."
denominator 12.
by 12.
"12 goes into 17 one (1) time with remainder 5."
Solution. The LCM of 6 and 9 is 18.
Just as 1 is half of 2, so 2 is half of 4. Therefore,
The student should not have to write any problem in which one of
Example 8. In a recent exam, one eighth of the students got A, two fifths got B, and the rest got C. What fraction got C?
Solution. Let 1 represent the whole number of students. Then the question is:
Now,
Video Help https://www.youtube.com/watch?v=GFGlgSfQ-Gk https://www.youtube.com/watch?v=52ZlXsFJULI https://www.youtube.com/watch?v=t6Gz2zwmeD0 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
No comments:
Post a Comment